Involvement of CTCF-Mediated Chromatin Loop Structure in Transcription of Clustered G1 Genes after Mitosis

نویسندگان

  • Yasufumi Murakami
  • Ataru Uehara
  • Shunya Goto
  • Masashi Fukuoka
  • Masaya Ohtsu
  • Katsuya Niki
چکیده

In mammalian cells, transcription is globally silenced during mitosis owing to the highly-condensed chromatin. Immediately after mitosis, daughter cells restart the transcription of early G1 genes along the program which is transmitted from parental cells. Although several mechanisms (such as “mitotic gene bookmarking”) have been postulated, the detailed mechanism of transcription of early G1 genes is still unknown. Recently, we have identified 298 genes as the early G1 genes by a genome-wide analysis using nascent mRNA, and found that neighboring genes of early G1 genes are frequently up-regulated at G1 phase subsequent to transcription of the early G1 genes. It has been shown that chromatin loop structure is involved in transcription of clustered genes. Here, we show that CTCF-mediated chromatin loop structure around early G1 gene loci is retained from interphase to mitosis. The retained chromatin loop structure allows G1 genes, which are located nearby the early G1 gene loci, to be three-dimensionally in close proximity to one another and facilitates transcription of these genes in G1 phase. Furthermore, down-regulation of CTCF causes delay of M/ G1 transition and decreased transcription of early G1 and G1 genes. Our findings may provide a new insight into the mitotic transmission of transcriptional program to the daughter cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CTCF binding and higher order chromatin structure of the H19 locus are maintained in mitotic chromatin.

Most of the transcription factors, RNA polymerases and enhancer binding factors are absent from condensed mitotic chromosomes. In contrast, epigenetic marks of active and inactive genes somehow survive mitosis, since the activity status from one cell generation to the next is maintained. For the zinc-finger protein CTCF, a role in interpreting and propagating epigenetic states and in separating...

متن کامل

Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster.

Long-range regulatory elements and higher-order chromatin structure coordinate the expression of multiple genes in cluster, and CTCF/cohesin-mediated chromatin insulator may be a key in this regulation. The human apolipoprotein (APO) A1/C3/A4/A5 gene region, whose alterations increase the risk of dyslipidemia and atherosclerosis, is partitioned at least by three CTCF-enriched sites and three co...

متن کامل

Direct Observation of Cell-Cycle-Dependent Interactions between CTCF and Chromatin.

The three-dimensional arrangement of chromatin encodes regulatory traits important for nuclear processes such as transcription and replication. Chromatin topology is in part mediated by the architectural protein CCCTC-binding factor (CTCF) that binds to the boundaries of topologically associating domains. Whereas sites of CTCF interactions are well characterized, little is known on how long CTC...

متن کامل

Cell type specificity of chromatin organization mediated by CTCF and cohesin.

CTCF sites are abundant in the genomes of diverse species but their function is enigmatic. We used chromosome conformation capture to determine long-range interactions among CTCF/cohesin sites over 2 Mb on human chromosome 11 encompassing the beta-globin locus and flanking olfactory receptor genes. Although CTCF occupies these sites in both erythroid K562 cells and fibroblast 293T cells, the lo...

متن کامل

RBPJ, the Major Transcriptional Effector of Notch Signaling, Remains Associated with Chromatin throughout Mitosis, Suggesting a Role in Mitotic Bookmarking

Mechanisms that maintain transcriptional memory through cell division are important to maintain cell identity, and sequence-specific transcription factors that remain associated with mitotic chromatin are emerging as key players in transcriptional memory propagation. Here, we show that the major transcriptional effector of Notch signaling, RBPJ, is retained on mitotic chromatin, and that this m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016